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We study competitive dynamics among sidebranches in the crystal growth of dendrites. Numerical simula-
tions are performed with a coupled map lattice to investigate the competitive dynamics among dendritic
branches. A simple form of interaction via a diffusion field is estimated from the numerical simulations of the
coupled map lattice. We propose a needle model on the basis of the competitive interaction, and perform
numerical simulations of it. The size distribution of the dendritic branches exhibits a power law in the needle
model.
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I. INTRODUCTION

The dendrite is a typical pattern in crystal growth. The tip
velocity and the parabolic shape near the tip region have
been intensively studied �1,2�. Many sidebranches appear far
from the dendritic tip in experiments on succinonitrile and
NH4Cl. Huang and Glicksman investigated the development
of sidebranches in an experiment on succinonitrile �3�. The
sidebranches compete with each other. Active sidebranches
grow faster and suppress the shorter sidebranches. The
growth velocity of the shorter branches becomes slower and
slower, and the shorter ones finally stop growing, because the
diffusion field is screened off by the active branches. The
envelope shapes formed by the active sidebranches and the
spacing between the sidebranches have been experimentally
investigated by several authors �4–6�. Li and Beckermann
studied a nonlinear coarsening process by the competition
among the sidebranches �5�. Recently, Couder et al. studied
the competitive time evolution of the sidebranches including
the shorter sidebranches. They found that the length of inac-
tive shorter sidebranches saturates in time in an exponential
manner �7�. In this paper, we will investigate the competitive
dynamics of the sidebranches, in particular, the dynamics of
the inactive shorter sidebranches.

On the other hand, scale invariance characterized by
a power law is often observed in several growth models
such as diffusion-limited aggregation �DLA�. Several types
of needle models have been proposed to study the competi-
tive dynamics among branches more explicitly �8–10�. In
two dimensions, needles grow only in the upward direction
without the tip splitting, starting from a basal line. Needles
interact with neighboring needles, and some grow faster,
which suppress the growth of shorter needles. Such needle
models are useful for the understanding of the competitive
dynamics among the sidebranches of dendrites. Further,
these models are suggestive for more general competitive
systems such as trees in a forest and ecological and social
systems �11,12�.

In this paper, we first study the competitive dynamics
among dendritic sidebranches using a coupled map lattice
and then propose a different needle model. The needle model

can be solved explicitly, and the size distribution of side-
branches exhibits a power law in the needle model.

II. COMPETITIVE GROWTH OF SIDEBRANCHES
IN A COUPLED MAP LATTICE MODEL

Phase-field models have been commonly used for the nu-
merical simulation of dendrites �13–15�. The sidebranching
was also studied using the phase-field models �16,17�. How-
ever, a large-scale numerical simulation of the phase-field
model is rather time consuming under the condition of small
supercooling, because the phase-field models are coupled
partial differential equations. We have proposed a coupled
map lattice model as a simple simulation method for crystal
growth, and succeeded in reproducing various patterns such
as DLA and dendrites �18�. Compared with the phase-field
model, the coupled map lattice is a simple model and it is
very efficient for a large-scale numerical simulation even at
small supercooling. It was shown that the law v�2=const,
where � is the radius of curvature near the tip of the dendrite
and v is the tip velocity, is approximately satisfied at small
supercooling in the coupled map lattice �19�. The envelope
and the spacing between the active sidebranches were also
numerically studied with the coupled map lattice model �20�.
Power law growth of the sidebranches is observed when the
spacing between the neighboring sidebranches is small, and
the concentration field around the sidebranches was also
studied �20�. The coupled map lattice was further applied to
the oscillatory growth in electrodeposition of Sn �21�.

In the coupled map lattice model, there are two variables;
one variable u denotes a diffusion field such as concentration
in the solution growth, and the other variable x is an order
parameter which indicates the degree of crystallization at
each lattice point. The order parameter x takes a continuous
value between 0 and 1 at interface sites. Time evolutions are
performed in two steps on each lattice point. The fourfold
rotational symmetry of the crystal is involved in performing
the simulation on a square lattice. The first step is a diffusion
process and the second step is a growth process at the inter-
face. The diffusion process on a square lattice is expressed as
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ut��i, j� = ut�i, j� + D�t/�x2�ut�i + 1, j� + ut�i − 1, j�

+ ut�i, j + 1� + ut�i, j − 1� − 4ut�i, j�� , �1�

where u and u� denote dimensionless concentrations, t is an
integer step number, �t is a time step, �i , j� is a coordinate of
the lattice point, and D is the diffusion constant. This process
is interpreted as the simplest difference equation correspond-
ing to the diffusion equation �u /�t=D�2u. The second step
is a growth process at the interface. The order parameter
x�i , j� is set to be 0 in the solution sites and 1 in the crystal
sites. The order parameter x�i , j� changes only at the inter-
face sites. The growth rule of x and u at the interface sites is
written as

xt+1�i, j� = xt�i, j� + ��tut��i, j� ,

ut+1�i, j� = ut��i, j� − ��tut��i, j� , �2�

where � denotes the incorporation rate of the solute into the
crystal at the interface sites. In this paper, we have assumed
that D=0.2, �t=1, �x=1, and �=1 for the sake of simplic-
ity. If x�i , j� goes over the threshold 1, the lattice site is
interpreted as being crystallized, and the interface moves by
one site. The initial concentration is assumed to be uniform
u�i , j�=u0 in regions other than areas where a seed of crystal
exists. The parameter u0 represents supersaturation in our
model.

We have performed a numerical simulation for u0=0.1.
The system size is 500�500. Periodic boundary conditions
are used as the lateral boundary conditions. A seed of a crys-
tal is set on a line y=1 as an initial condition. Many den-
drites grow from the linear seed. The initial value of x at the
linear interface site is distributed randomly between 0 and
0.1. Figure 1�a� displays a snapshot pattern of many dendritic
branches. Various sizes of dendritic branches appear. Taller
branches are active and suppress the growth of the shorter
branches. Small horizontal sidebranches appear from each
vertical dendrite. The growth of the small horizontal side-
branches is more active for the taller branches, in particular,
at the side where there is wider open space. Figure 1�b�
displays time evolutions of four dendritic tips at i=158, 171,
187, and 315. The growth velocities of the shorter branches
other than i=171 decrease in time and become zero. The

height of each short branch approaches a constant value ex-
ponentially in time, although the final height and the decay
constant are different for different branches. The decay con-
stant for a shorter branch is generally larger than that for a
taller branch. Figure 1�c� displays a double-logarithmic plot
of the height distribution of dendritic branches at the final
simulation time t=400 000 for u0=0.1, which is obtained
using 50 ensembles with different random initial conditions.
Although several tallest branches are still growing, most
branches, whose heights are shorter than about 200, stop
growing. The height distribution P�y� is approximated by a
power law l−� with ��1.9 for y�5.

III. DIFFUSION FIELD AROUND STEADILY
GROWING DENDRITES

The competition among many dendritic branches arises
through the concentration field. It is rather difficult to solve
the diffusion field with the moving interface. If dendritic
branches with growth velocity v are periodically arranged at
a constant interval of L, and the shape of each dendrite is
approximated by a rectangle as shown in Fig. 2�a�, the dif-
fusion field can be solved approximately by assuming
u�x ,y , t�=u�x ,y−vt�. Then, the diffusion equation is ex-
pressed as

− v
�u

�y
= D� �2u

�x2 +
�2u

�y2	 , �3�

where y−vt is rewritten as y, and the tip position of the
dendritic branches is assumed to be y=0. The boundary con-
ditions are u�x ,��=u0 and u�x ,−��=0. The other boundary
condition is u�x ,y�=0 inside the dendritic branches, which
are located at nL−Lu0 /2�x�nL+Lu0 /2 and y�0. Here, n
is an integer and the width of the dedritic branches is as-
sumed to be u0L owing to the conditions of steady growth
and the conservation law of u. The solution of this equation,
satisfying the boundary conditions and the mirror symmetry
around x=0, is expressed by a Fourier series expansion as

FIG. 1. �a� Snapshot of dendritic pattern for u0=0.1 in a coupled map lattice model. �b� Time evolutions of tip positions of four dendritic
branches at i=158, 171, 187, and 315. The taller three dendrites at i=171, 315, and 187 are indicated in �a�. �c� Height distribution of
dendritic branches. The dashed line is P�y��y−1.9 for y�200.
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u�x,y� = 
u0�1 − b0e−k0�y� + �
n=1

N

bn cos�2	nx/L�e−kn�y for y � 0,

�
n=1

N

an sin�	�2n − 1��x − Lu0/2�/L�1 − u0��ekny for y � 0,� �4�

where kn�=1/2�v /D+�v /D�2+4�2	n /L�2� and kn=1/2
��−v /D+�v /D�2+4�	�2n−1� /L�1−u0��2�. Note that
1 /k0�=D /v is a diffusion length, and kn��0,kn�0. The Fou-
rier amplitudes bn and an are determined by the continuity
conditions of u and �u /�y at y=0, which are expressed as

u0�1 − b0� = �
n=1

N

2an
1 − u0

	�2n − 1�
,

bm/2 = �
n=1

N
an cos�m	u0��1 − u0�

	
� 1

2m�1 − u0� + �2n − 1�

−
1

2m�1 − u0� − �2n − 1�	, m = 1,2, . . . ,N ,

u0b0k0� + �
m=1

N

bm cos�2	m

L
�u0L/2 + L�1 − u0�j/�2N��	�− km� �

= �
n=1

N

an sin��2n − 1�	j/�2N��kn, j = 1,2, . . . ,N . �5�

The Fourier amplitudes an and bn are solutions to the coupled
linear equations �5�.

The concentration u�x ,y� at the middle line x=L /2 be-
tween the neighboring two branches is expressed as

u�L/2,y� = �
n=1

N

an�− 1�n−1ekny for y � 0. �6�

If �y� is large, u�L /2 ,y� is approximated only by the first term
as

u�L/2,y� = a1ek1y . �7�

Figure 2�b� compares the concentration field u�x ,y� �solid
curve� at the middle line in the coupled map lattice model for
u0=0.15 and L=80 with the concentration u�L /2 ,y� �dashed
curve� obtained from Eq. �6� for L=80, u0=0.15, N=10, and
v=0.0104. Here, the tip velocity v=0.0104 is the one ob-
tained by the numerical simulation of the coupled map lat-
tice. Figure 2�c� compares the concentration u by Eq. �6�
with the approximation of u by Eq. �7� with a1=0.0102 and
k1=0.026 54. The good agreement shows that the approxi-
mation of the concentration field u by a single exponential
function is rather good.

IV. COMPETITIVE GROWTH AMONG
A FEW DENDRITES

Competitive dynamics among many dendrites is rather
difficult. We first investigate competitive dynamics between
two dendrites. We consider a periodic array of dendrites with
intervals of L /2 as shown in Fig. 2�a�, and the heights of the
two dendritic branches are different as an initial condition.
The taller dendrite grows faster and the velocity of the
shorter one decreases in time. Figure 3�a� is a snapshot of the
two dendrites at u0=0.1 and L=100. Periodic boundary con-
ditions are used as the lateral boundary conditions. The tip
positions of the taller and shorter dendrites are expressed as
�i1 ,y1� and �i2 ,y2�. Here, the tip position is defined for ex-
ample as y2= j2,max+x�i2 , j2,max+1�, where j2,max is the maxi-
mum crystallized site on the line i= i2, because x�i2 , j2,max

+1� represents the degree of crystallization at the interface
site �i2 , j2,max+1�. Figure 3�b� displays a semilogarithmic

FIG. 2. �a� Configuration of a periodic array of dendrites and schematic plots �dashed curves� of u�x ,y� for y�0 and y�0. �b�
Concentration field u�x ,y� at x=L /2 by the coupled map lattice model �solid curve� and by Eq. �6� �dashed curve� at u0=0.15 and L=80. �c�
Comparison of Eq. �6� �solid curve� and Eq. �7� �dashed curve�.
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plot of the growth velocity dy2 /dt of the shorter dendrite as
a function of the height difference �y=y1−y2. The growth
velocity of the shorter dendrite decays approximately as
dy2 /dt�exp�−k�y�. The decay constant k is 0.031. Figure
3�c� displays the relation of the decay constant k �circle� as
a function of the interval L /2 between the two dendrites.
The crosses denote the decay rate k1�L�=1/2�−v /D
+�v /D�2+4	2 / �L�1−u0��2� calculated in the previous sec-
tion, where v is evaluated as the tip velocity of the taller
dendrite. The decay rate k of the growth velocity of the
shorter dendrite was evaluated when the shorter dendrite is
strongly screened off by the taller dendrite. It is natural that
the decay rate k of the growth velocity of the shorter dendrite
is close to another decay rate k1�L� of the concentration field
u on the middle line x=L /2 between the taller dendrites.
That is, the growth velocity of the shorter dendrite is ap-
proximately expressed as dy2 /dt=dy1 /dt exp�−k1�L��y1

−y2��. Here, we have made use of the fact that the velocities
of the two dendrites are the same, if the heights of the two
dendrites are the same, i.e., y1=y2. If v /D is sufficiently
smaller than 2	 /L, k1�L��	 / �L�1−u0��. Then, dy2 /dt
�dy1 /dt exp�−	 / �L�1−u0���y1−y2��=dy1 /dt exp�−	 / �2�1
−u0��tan 
�, where 
 is a screening angle satisfying tan 

= �y1−y2� / �L /2� as shown in Fig. 3�a�. The screening effect
by the taller dendrites was analyzed using the screening
angle by Couder et al. �7�. Our result supports their analysis,
when v /D is very small. However, the exponential term
is approximated as exp�−�D /v�	2 / �L2�1−u0�2��y1−y2��
=exp�−�D /v�	 / �2L�1−u0�2�tan 
� and the analysis using
only tan 
 is not good, when 2	 /L is sufficiently smaller
than v /D.

If the shorter dendrite is not located exactly on the middle
line between the two taller dendrites but located at i2= i1
−�x, the growth velocity of the shorter dendrite will become
even smaller, because the concentration field u there is
smaller than that is on the middle line. The concentration
field u is roughly expected to be

u�i2,y� � a1ek1y sin�	�x/L� . �8�

Here, we have neglected the effect of nonzero u0, because
the thickness of the dendrites changes when one dendrite
overcomes the other, and the width of the dendrite is small

near the dendritic tip. Figure 4�a� displays a snapshot pattern
of two dendrites at i2=30 and i1=50. Owing to the periodic
boundary conditions, a small dendrite with height y2 and a
large dendrite with height y1 are assumed to exist respec-
tively at i=130 and −50, although they are not shown in Fig.
4�a�. The initial position of the taller dendrite is changed as
i1=40,50, . . . ,80, and we have thus calculated the growth
velocity v1 of the shorter dendrite. The growth velocity v1
becomes smaller as �x is smaller. The growth velocity for
�x=L /2 is denoted as v10. Figure 4�b� displays the ratio
v1 /v10 �plus�, when the height difference is �y=150. The
dashed line represents sin�	�x /L�. Thus, we have found that
the time evolution of the shorter dendrite can be approxi-
mated by

dy2/dt � �dy1/dt�exp�− k1�L��y1 − y2��sin�	�x/L� .

Next, we consider the competitive dynamics among four
dendrites, which are located at i=0, L /4, 2L /4, and 3L /4,
and these dendrites are further periodically arranged with
spatial period L. The tallest dendrites are located at i=0 and
L, the next tallest one is located at i=L /2, and the shortest
ones, all being the same size, are located at i=L /4 and 3L /4.
The heights of the four dendrites are denoted as y1, y2, and
y3, respectively. Figure 5�a� is a snapshot pattern of dendrites
at u0=0.1 and L=120. Figure 5�b� displays a semilogarith-
mic plot of the ratios of growth velocities r2=v2 /v1 and r3
=v3 /v2 as a function of the height differences �y2=y1−y2

FIG. 3. �a� Snapshot growth pattern of two dendrites for u0=0.1 and L=100. �b� Semilogarithmic plot of the growth velocity of the
shorter dendrite as a function of the size difference �y of the two dendrites. �c� Comparison of the decay rate k �circle� in the coupled map
lattice model and k1�L� �cross� for the diffusion field.

FIG. 4. �a� Snapshot growth pattern of two dendrites which
grow from i2=30 and i1=50 for u0=0.1 and L=100. �b� Ratio
v1 /v10 of the growth velocity of the shorter dendrite, when the size
difference �y is equal to 150 for u0=0.1 and L=100. The dashed
curve is sin�	�x /L�.
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and �y3=y2−y3. The ratios decay exponentially as r2
�exp�−k12�y2� with k12�0.243 and r3�exp�−k13�y3� with
k13�0.64. The ratio r1=v3 /v1=r2�r3 does not exhibit a
simple exponentail decay as a function of �y1=y1−y3, be-
cause r1 is approximated by exp�−k12�y2−k13�y3�, which is
actually confirmed. Figure 5�c� displays decay rates k12
�square� and k13 �circle� as a function of L. Other marks
represent k1�L�=1/2�−v /D+�v /D�2+4�	 /L�2� �plus� and
k1�L /2�=1/2�−v /D+�v /D�2+4�	 / �L /2��2� �cross�. If all
the dendrites grow with the same velocity v, the diffusion
field satisfies Eq. �3�. The boundary conditions are u=0 in-
side the dendrites. If all the dendrites are further assumed to
be needles with zero thickness, the boundary conditions are
u=0 on the lines x=0,y�y1, x=L /4 ,y�y3, x=L /2 ,y�y2,
and x=3L /4 ,y�y3. The concentration field u can be
expanded in a Fourier series as u�x ,y�=�n=1

N an sin��2n
−1�	x /L�ekn�L�y and it is approximated as u�x ,y�
=a11 sin�	x /L�ek1�L�y for y2�y�y1. Similarly, u�x ,y�
=a12 sin�2	x /L�ek1�L/2�y in the region 0�x�L /2 and y3

�y�y2, and u�x ,y�=a12 sin�2	�x−L /2� /L�ek1�L/2�y in the
region L /2�x�L and y3�y�y2. The fairly good agree-
ment between k12 and k13 with k1�L� and k1�L /2� implies that
the ratios r2=v2 /v1 and r3=v3 /v2 can be approximated by
exp�−k1�L��y2� and exp�−k1�L /2��y3�. That is, the growth
velocity of the shorter dendrites is proportional to the con-
centration field u�x ,y� at the tip position of the shorter den-
drites, which is realized under the condition that the shorter
dendrites do not exist.

V. SIMPLE NEEDLE MODEL FOR COMPETITIVE
DYNAMICS AMONG DENDRITIC BRANCHES

On the basis of the numerical results elucidated in the
previous section, we propose a simple needle model for com-
petitive dynamics among dendritic branches. The thickness
and the branching of each dendrite are neglected. We first
explain the needle model for four dendrites at i=0, L /4,
2L /4, 3L /4, and L as shown in Fig. 5�a�. For simplicity, we
assume the mirror symmetry with respect to y=L /2. The
tallest dendrites are located at i=0 and L, the next tallest one
is located at L /2, and the third tallest at L /4 and 3L /4,

respectively. The heights of the dendrites are denoted as y1,
y2, and y3. The velocity of the tallest one is assumed to be
constant v1. The velocity v2 of the second one is assumed
to obey v2=v1 exp�−k1�L��y1−y2��. The velocity v3 of the
third one is assumed to be v3=v1 exp�−k1�L��y1−y2��
�exp�−k1�L /2��y2−y3��=v2 exp�−k1�L /2��y2−y3��. These
relations can be generalized to a hierarchical structure of
needles with the maximum rank number K as shown in Fig.
6�a� �K=4�. The total number of needles in this hierarchical
structure is 2K−1+1 and the tallest ones are located at i=0
and i=2K−1=L. The jth ones are located at �2m−1��2K−j,
where m=1,2 , . . . ,2 j−2. The velocity of the jth one is related
to the velocity of the �j−1�th one as

v j = v j−1 exp�− k1�L/2 j−2��yj−1 − yj�� . �9�

Here, we have neglected terms such as sin�	�x /L� in Eq. �8�
for the sake of simplicity. The relation of the growth veloci-
ties for dendrites is rewritten as a form of differential equa-
tion:

dyj

dt
=

dyj−1

dt
exp�− k1�L/2 j−2��yj−1 − yj�� . �10�

This is our needle model for competitive dynamics among
dendritic branches with a hierarchical structure. This equa-
tion can be explicitly solved as

FIG. 5. �a� Snapshot growth pattern of two dendrites that grow from i=0,30,60,90 for u0=0.1 and L=120. �b� The solid lines represent
the ratios v2 /v1 and v3 /v2 as functions of the height differences �y2=y1−y2 and �y3=y2−y3. The dashed lines denote r2�exp�
−0.243�y2� and r3�exp�−0.64�y3�. The dashed lines �in particular the dashed line for r2� are almost overlapped with the lines of v2 /v1 and
v3 /v2, and the differences are indistinguishable in this plot. �c� Decay rates k12 and k13 of v2 /v1 �square� and v3 /v2 �circle� and k1�L� �plus�
and k1�L /2� �cross�

FIG. 6. �a� Configuration of a hierarchical structure with the
maximum rank order K=4. �b� Time evolution of yi for the needle
model with K=16.
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exp�− k1�L/2 j−2�yj�t�� − exp�− k1�L/2 j−2�yj�0��

= exp�− k1�L/2 j−2�yj−1�t�� − exp�− k1�L/2 j−2�yj−1�0�� .

Then, the height yj�t� at any time t is explicitly expressed as

yj�t� =
− 1

k1�L/2 j−2�
ln�exp�− k1�L/2 j−2�yj�0��

− exp�− k1�L/2 j−2�yj−1�0�� + exp�− k1�L/2 j−2�yj−1�t��� ,

�11�

where the tallest dendrite is assumed to grow at a constant
velocity y1�t�=y1�0�+vt. Figure 6�b� displays the time evo-
lution of yj�t� for a hierarchical structure with K=16 for
k1�L�=	 /L, L=105, and v=0.02 by Eq. �11�. The initial con-
ditions are yj = �K+1− j�ln 2. The dendrites with the excep-
tion of the tallest one eventually stop growing. Figure 7�a�
displays the height distribution P�y� at the stationary state for
the hierarchical structure with K=16 for k1�L�=	 /L, L
=105, and v=0.02. The dashed line represents P�y��y1.86. If
the argument in the logarithmic term in Eq. �11� is assumed
to be a constant, yj �L /2 j−2, and the number Nj of the jth
dendrites is 2 j−2. Therefore, N�y�=1/y, and P�y�
�N�y� / �y /2��1/y2. The deviation of the exponent 1.86
from 2 might be due to the logarithmic term. Figure 7�b�

displays the height distribution P�y� for k1�L�=1/2�−v /D
+�v /D�2+4�	 / �L /2��2� for the same hierarchical structure
with K=16 for L=105, D=0.2, and v=0.02. The height dis-
tribution is approximated by P�y��y−1.47. When L is suffi-
ciently large, k1�L� is approximated as k1�L��2	2 /L2. If the
logarithmic term in Eq. �11� is neglected, yj �L2 /22j−4;
therefore, N�y�=1/y1/2 and P�y��y−1.5. The deviation of the
exponent 1.47 from 1.5 is also due to the logarithmic term.

Our needle model can be generalized to a random system.
Figure 8�a� displays an example of random dendritic
branches. As shown in Fig. 8�a�, we can assign a rank order
to each dendritic branch. The order of the tallest branches is
1; they are located at i=0 and i=L. The order of the second
one is 2, and it is located at i2. The tallest ones between the
first- and the second-order branches are expressed as order 31
and 32, which are located at i31

and i32
. Similarly, the tallest

ones between the �j−1�th order and the �j−1−k�th branches
�1�k� j−2� are expressed as j1 , j2 , . . .. The maximum num-
ber of the jth-order branches is 2 j−2, but it is generally
smaller than the maximum number. The growth velocity of
the jth-order branch is assumed to be determined by th
e diffusion field, which is approximately given by an expo-
nential function of the height difference. Thus, the growth
velocity is expressed as v jl

�t�=v1 exp�−�m=1
j−1 k1�Lml

��y�m − 1�l�−yml�
��=v�j − 1�l�

exp�−k1�Ljl
��y�j − 1�l�

−yjl
��, where Ljl

is the

spacing between two corresponding dendritic branches. The
spacing Ljl

takes on a different value for each dendritic
branch jl in the jth rank order. For example, L2 is the spacing
between the two tallest branches and therefore L2=L. Simi-
larly, L31

= i2−0, L32
=L− i2, and L41

= i31
−0, L42

= i2− i31
, L51

= i43
− i2, L61

= i43
− i51

and so on. These relations concerning
the growth velocities are rewritten as coupled differential
equations:

dyjl

dt
=

dy�j − 1�l�

dt
exp�− k1�Ljl

��y�j − 1�l�
− yjl

�� . �12�

The growth velocity dyjl
/dt of the jth-order branch cannot

overcome the velocity dy�j − 1�l�
/dt of the �j−1�th-order

branch, because exp�−k1�Ljl
��y�j − 1�l�

−yjl
���1. Therefore,

the rank order of dendritic branches does not change during

FIG. 8. �a� Random branches and their ordering. �b� Final pattern of yj for v=0.02, L=200, and k1�L�=	 /L. �c� Height distribution P�y�
for L=1000, v=0.02, and k�L�=	 /L. The dashed line denotes a power law P�y−1.79.

FIG. 7. �a� Height distribution P�y� for v=0.02, L=105, and
k1�L�=	 /L. �b� Height distribution P�y� for v=0.02, D=0.2, and

k1�L�=1/2�−v /D+�v /D�2+4�	 / �L /2��2�
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the time evolution, and the spacing Ljl
also does not change

in time. That is, the rank order and Ljl
are determined by the

initial condition. This differential equation can also be ex-
plicitly solved as

yjl
�t� =

− 1

k1�Ljl
�

ln�exp�− k1�Ljl
�yjl

�0��

− exp�− k1�Ljl
�y�j − 1�l�

�0�� + exp�− k1�Ljl
�y�j − 1�l�

�t��� .

�13�

The height of each dendritic branch is completely deter-
mined by the initial conditions.

Figure 8�b� displays the final pattern of the dendritic
branches, when the initial values of yi�0� are random num-
bers between 0 and 0.1 and v=0.02 and L=200. The decay
rate k�L�=	 /L is used for the numerical simulation. A very
large height difference appears among the dendritic
branches, as a result of strong competition. Only two den-
drites at i=0 and L grow at the constant velocity v. Figure
8�c� displays the height distribution P�y� for L=1000, v
=0.02, and k�L�=	 /L. The dashed line denotes a power law
with exponent 1.79. The exponent is roughly comparable to
the exponent 1.86 for the hierarchical model and the expo-
nent 1.9 for the coupled map lattice model in Fig. 1�c�.

VI. SUMMARY

We have investigated the competitive dynamics among
dendritic branches using a coupled map lattice. We have
found an exponential decay law of the growth velocity for
shorter dendrites. The height distribution exhibits a power
law approximately. The decay rate of the growth velocity is
related to the decay rate of the diffusion field. Then, we
proposed a needle model for the competitive dynamics
among dendritic branches on the basis of the interaction
characterized by the exponential decay. The needle model
can be solved explicitly, that is, the final distribution is com-
pletely determined by the initial conditions. The height dis-
tribution by the needle model is also approximated by a
power law, and the exponent is roughly close to the value
obtained by the coupled map lattice model. Our model is a
very simple model but it could conceivably be an instructive
one for general competitive systems.

Our results are qualitatively consistent with the results in
�7,17�, in that on exponential decay law of the growth veloc-
ity is found for shorter branches, and the screening effect is
approximately expressed via tan 
= �y1−y2� / �L /2� as shown
in Fig. 3�a�. We are now investigating experimentally the
dendritic growth of NH4Cl. We would like to compare the
experimental results and the previous experimental results
shown in �5,7� with our numerical results more quantitatively
in the future.
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